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were to be extended from point to space groups, and 
the contracted groups have some common features 
with the 'P-symmetry  groups' of Zamorzaev (1967). 
Let us also mention the classification work of Bohm 
& Dornberger-Schiff (1967) in which the augmented 
matrices represent either the contracted groups or 
ordinary subperiodic groups with respect to an origin 
which lies in the hyperplane they leave invariant [the 
matrices given in that work are not general enough 
to express subperiodic groups with respect to any 
chosen origin in E(n)] .  

The site-point groups of the Euclidean space may 
be also considered as the simplest kind of subperiodic 
group - groups with trivial translation subgroup. It 
is well known that space groups may be considered 
as extensions of translation subgroups by point 
groups (Ascher & Janner, 1965; 1968/69). 
Analogously, reducible space groups may be con- 
sidered as extensions of their partial translation sub- 
groups by the corresponding factor groups - the sub- 
periodic groups. It is again an advantage to use the 
contracted subperiodic groups in such an approach. 
There are far-reaching analogies in the consideration 
of space groups as extensions by subperiodic groups 
with the ordinary consideration of these groups as 
extensions by point groups. 

The first immediate consequence of the factoriz- 
ation theorem is, however, the fact that we can classify 
reducible space groups into subperiodic classes. This 
will be the subject of our subsequent paper. 
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Abstract 

Classification of reducible space groups into pairs of 
complementary subperiodic classes with respect to 
various reductions is introduced and analysed. This 
classification is finer than the classification into 
geometric classes and it intersects with the 
classification into arithmetic classes. It is proved that 
an intersection theorem holds for those classes which 
correspond to Z decomposition of the translation 
subgroups of the reducible space groups and then 
symmorphic representatives of subperiodic classes of 
reducible space groups are introduced in analogy with 
the ordinary concept of symmorphic space groups. 
In particular, it is shown that the symmorphic space 
group is a symmorphic representative of subperiodic 
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classes, defined by complementary symmorphic sub- 
periodic groups. In cases of Z reductions it is shown 
that the pair of complementary subperiodic classes 
may define none, one or several space groups; if one 
such group belongs to these classes, then also a set 
of groups which differ by shifts in space does. These 
shifts are determined with translation normalizers. 
Further ramifications and possible use of the theory 
are discussed. 

I. Introduction 

As we have shown in a previous paper (Kopsk2~, 
1989), reducible space groups can be factorized by 
their partial translation subgroups and the resulting 
groups can be interpreted as subperiodic groups. Vice 
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versa, we can accordingly assign reducible space 
groups to various subperiodic classes. The subperi- 
odic groups which define these classes belong them- 
selves to the same geometric classes as the reducible 
space groups. Each reducible space group can be 
assigned to at least one pair of subperiodic classes. 
This is exactly the case when the point group G admits 
just one, that is an orthogonal reduction class. Gen- 
erally, the space group is assigned to various pairs of 
subperiodic classes, depending on the reduction with 
respect to which we perform the factorization. The 
number of such classifications is finite if the group 
G admits only orthogonal reducibility, infinite if it 
admits inclined reductions. 

Different reducible space groups of the same type 
have technically different reductions and their sub- 
periodic classes are accordingly defined by different 
contracted subperiodic groups. We show in the next 
section how to reduce the problem to representatives 
of space-group types through affine equivalence. In 
this connection we also discuss the relationship of 
enantiomorphism of reducible space groups with 
enantiomorphism of corresponding subperiodic 
groups. 

Then we discuss the problem of determination of 
space groups which belong to various subperiodic 
classes. In particular, we study the relationship 
between pairs of complementary contracted subperi- 
odic groups and space groups which belong to thus 
defined subperiodic classes. We prove an intersection 
theorem which says that reducible space groups, the 
translation subgroup of which is a direct sum of 
translation subgroups (Z decomposition) of two com- 
plementary subperiodic groups, lie on the intersec- 
tions of these classes. In this connection we also define 
the symmorphic representatives of subperiodic 
classes and discuss their geometrical meaning. 

Further, we investigate the case when translation 
subgroups of subperiodic groups which define sub- 
periodic classes couple into a subdirect sum (Z reduc- 
tion) which determines the translation subgroup of a 
space group. We show that in such a case one space 
group, which belongs to the two subperiodic classes, 
generally defines a set of space groups which belong 
to the same pair of classes and which differ only by 
a shift in space. It is shown how to determine these 
shifts with translation normalizers. 

The paper closes with a discussion of the relation- 
ship of the factorization procedure and of subperiodic 
classes to other problems of space-group theory, 
especially in the theory of lattices of normal sub- 
groups of space groups and in the so-called scanning 
of subperiodic groups. 

Since the present paper is a natural continuation 
of the previous one (Kopsk2~, 1989), we use the ter- 
minology and concepts used there without referring 
to it; when we use formulae, definitions or theorems 
of that paper, we refer to them with roman number I. 

2. Subperiodic classes of reducible space groups 

In view of theorem 1.2, we can classify reducible space 
groups into classes of subperiodic groups. If the point 
group G admits only one reduction of the space 
V( T6, Q), then the classification is unique; the space 
group belongs to two complementary subperiodic 
classes. If there are several or infinitely many reduc- 
tions, then we must relate the classifications to 
individual reductions. 

Definition 1: Let q3 be a reducible space group, 
V(Tc,  Q) = V,(k, Q)• V2(h, Q) a certain Q reduc- 
tion and o"1,0"2 the homomorphisms, defined by rela- 
tions (I.10) or (I.10b). Then we say that the group ~3 
belongs to subperiodic classes ~ = 0"1(~3), 97 = 0.2(~3) 
with respect to this reduction. 

This definition concerns a certain space group ~3 
and the resulting classes are given by certain subperi- 
odic groups or contracted subperiodic groups. We 
would, of course, prefer to have a classification for 
all space-group types. It is intuitively clear that, for 
two reducible space groups of the same type, there 
exist equivalent reductions, with respect to which the 
space groups are classified into subperiodic classes 
of the same type of subperiodic groups. It is therefore 
sufficient, for the purposes of  tabular record, to find 
the reductions and classifications for one reference 
group of each space-group type and to show how to 
transform this information to other space groups of 
this type. 

To find the relationships between the classification 
of various space groups of the same type with respect 
to equivalent reductions, it is suitable to consider 
affine conjugation as the operation of the affine group 
Af(n) on the reference group ~3 of the space-group 
type. We denote by 

the group which will be obtained from q3 by affine 
conjugation. The affine operation used in the conjuga- 
tion consists of an operation which leaves invariant 
the point P chosen for the origin (deformation plus 
rotation), followed by translation "r and it acts on the 
Euclidean space. Corresponding conjugation of the 
group ~3 is written as an action of element of Af(n), 
considered as an inner automorphism of Af(n) [the 
affine group Af(n) has a trivial centre], on its sub- 
groups. This provides a suitable formalism in which 
operators of pure translations may be denoted by 
e(-r), multiplication of subsequently used automor- 
phisms gives O~p("C)~p(lJl , )  = (afl)p('t+ alx) and 
reciprocal to a given automorphism is (O~p('i')) - l -  
(a- l )p(--a- la ' ) .  Let us now consider groups 

~ =  {G, To, P, u~(g)}, (la) 
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~ ( ~ ) ~ =  ~(~) 

={G,  T~, P,u~(g)+~(g, x)} 

c~p(0)~q = 

~ ( ~ ) ~ =  

{G, T~,P+x,u~(g)},  ( lb)  

~J~={aGa-',aT~,P, au~(g)}, ( lc)  

~ 5 ( ' r )  

{aOa-' ,  aTo, P, auo(g)+~(aga -1, x)} 

={aGa-l ,  aT~,P+x,  auG(g)} ( l d )  

and the group 

~,~(O~X) = { a G a  -1, aTG, P, auG(g)  + ag~(g, "r)} 

={o~Go~-~, o~T~,P+o~r, ,~uc(g)}. ( le )  

The first two groups differ only by a shift ,r and we 
can apply the same homomorphisms o'1, o'2 to them. 
We already know the result. It is o'~(~g(-r))= ~(,r~), 
o'2(~3('r))=~('r2), so that the shift of the original 
group by "r leads to the shift of its projections by 
projections of the shift ,r onto corresponding sub- 
spaces. 

If the group G leaves invariant subspaces V~(k, R), 
V2(h, R), then the group aGa -~ leaves invariant sub- 
spaces aV~(k,R), aV2(h,R). Also, if V(T~, Q ) =  
V~(k, Q)~  V2(h, Q) is a Q reduction which implies 
Z reduction or Z decomposition, (I.3a) with 
(I.3b) or (I.3c), then aV(T~, Q ) =  V(aT~, Q ) =  
aV~(k,Q)O)aV2(h,Q) is a Q reduction, which 
implies Z reduction or Z decomposition of the group 
a(T~) into either subdirect or direct sum of groups 
a(T°~),  ce(T~2 ) and the projections cr~, cr 2 in (I.3b) 
have to be replaced by o"51 = atrla -~, 0 " 5 2  = 0~0"201~-1 
If a is just an isotropic deformation of the subspaces 
Vl(k, R), V2(h, R), in which all vectors of V~(k, R) 
are multiplied by a common factor, all vectors of 
V2(h, R) by another common factor, then the R 
reduction will not change and the transformed groups 
~5 ('r) can be mapped into the same general contrac- 
ted subperiodic groups as the group ~. 

Definition 2: The reduction V(n, R) = V~(k, R)O) 
11'2(h, R), associated with the group ~, and the reduc- 
tion V(n, R) = aVl(k, R)~aV2(h, R), associated 
with the group ~5, are said to be equivalent. 

It is easy to show that, if T ~ ,  T~2 are partial 
translation subgroups of groups ~('r), then a (T~l ) ,  
a(T~z) are partial translation subgroups of groups 
~gs('r) and that the factor groups ~ds('t)/a(To~), 
~ds('t)/a(T02) are isomorphic with ~('r)/TG~, 
~d('r)/To2, respectively. We want, however, to find 
also the homomorphisms o'5~, o'52 which map the 
space groups ~5('r) onto contracted subperiodic 
groups of appropriate geometrical meaning, which 
can be interpreted as projections of space groups. 

It is only a problem of a small calculation to 
do that if we work with mapping on subperiodic 
groups of the Euclidean space, which leave invariant 

hyperplanes (P, aVl(k, R)), (P, aV2(h, R)), because 
these are also subgroups of the affine group and 
operators t~p(-r) can be applied to them. We define 
again the homomorphisms by o.5~{aga -1 t }p=  
{aga-llcrsi(t)}p = {aga-~lti}p. From relations 

o.5iap('r){g t}p 

= o.si{ aga-l [ at + ~p( aga -1, 'T)}p 

= {aga -11 trsiat + O'ai("t-- aga- ' .  X)}V 

= {ag~-'la~ri(t)+~(ag~-', 'Tai)} P 

= ap(a'5i){g tr,(t)}p 

= ap(%i)o.i{glt}p, 

which can be applied to any element of ~f~(k) × c~2(h), 
we get a very useful relation between homomorphisms 
and automorphisms" 

o.siap(X)=ae('rs,)o.i, i =  1,2. (2) 

Applying both sides of this relation to a group ~, 
we get 

o. 5, c ~  (~ )  ~ = o. 5,( "d5 ( ~ ) )  

= ~ ( ~ 5 , ) ~ i ( ~ )  

where "r5~,%2 are projections of "r to aVe(k, R), 
aV2(h,R). Notice that application of homomor- 
phisms 0"51,0"52 to the group ( le) ,  which differs from 
( ld )  in the order in which ap(O) and e('r) are applied, 
gives 

o.5,(~5 (~'r)) = ~5 (~'r,),  

where ' I ' 1 ,  '1" 2 are projections of 'r  to Vl(k, R), V2(h, R). 
These results are again tied up with the choice of 

the point P, which can be added as an index to 
homomorphisms o.si. This consideration shows, 
however, how to choose the general contracted sub- 
periodic groups and the homomorphisms into these 
groups. We have to introduce again Cartesian prod- 
ucts E~l(k) xaV2(h,R),  aVl(k,R)xE52(h),  where 
aVl(k, R), aVz(h, R) are difference spaces of E,,l(k), 
EsE(h), respectively and ~5~(k) × (752(h), ~51(k) x 
~52(h) are the general contracted subperiodic groups 
acting on these spaces. The groups 65~(k)= 
a61(k)a -1, 6~2(h)=aOE(h)a  -1 are here the 
orthogonal groups on aVe(k, R), aV2(h, R) and the 
elements of contracted groups are [aga-l[ah]p, 
(aga-llat2)p. If we now define homomorphisms 0"51, 
o'52 by 

o.51{ ag a-a It}v = [ aga-l l trs~(t) ]P = [ aga-~ l ah]P ; 

0"52{ aga  -l It}p -- ( a g a - '  ] cr52(t))p -- (aga-1]  at2)v, 

we can prove relations (2) in exactly the same way 
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as we did for homomorphisms onto ordinary sub- 
periodic groups. We then get, in the notation for 
contracted subperiodic groups, 

=[ aGa-1, a T ° , ,  P, +'GI , aUGt(g)], 

O. 2( 03a (,,1.)) = ~c~ (q.c~ 2) (3) 

=( °~Ga-I, aT°2,  P2 +'L,2, aUG2(g)). 

We can formulate these results as: 

Theorem 1 (Equivalence of classifications): If a 
reducible space group 03 belongs to complementary 
subperiodic classes ~ and ~ with respect to a reduc- 
tion V(n, R ) =  Vl(k, R ) O  V2(h, R), then the group 
03~, ('r) is also reducible and belongs to complementary 
subperiodic classes .T~ (-r~,~) and ~( ' r~2)  with respect 
to reduction V(n, R )=  aVe(k, R)@o~V2(h, R). 

We have performed all these considerations within 
the realm of affine groups, so that groups 03~,(-r) are 
not necessarily Euclidean space groups. Actually, the 
whole reducibility theory can be developed from the 
beginning for affine space groups under which we 
understand any affine conjugates of Euclidean space 
groups. If we want to remain within the Euclidean 
space groups, it is sufficient to assume that 03 is 
Euclidean and ae(-r) such that the group aGa -~ is 
orthogonal (assuming G itself is orthogonal). 

Enantiomorphism 

The affine group Af(n) has a halving subgroup 
Af*(n), consisting of those affine operations of which 
the linear constituents belong to the group G + V(n), 
the halving subgroup of the general linear group 
GV(n) of operators on V(n), which consists only of 
linear operators with positive determinant. We shall 
use the symbol a for the elements of these groups 
now, reserving m and ma or am for elements of 
cosets, for which the determinants are negative. The 
translational parts can be disregarded in consider- 
ation of enantiomorphism, so that we can neglect the 
difference between affine operations and correspond- 
ing linear operators. 

Now, an affine class defined by a group 03 either 
splits or does not split into a pair of proper affine 
classes, called enantiomorphic pair. If for an 
arbitrarily chosen m there exists a such that 03,. = 03~, 
then for each m there exists some a such that the 
groups coincide and enantiomorphism does not 
occur. If for some rn there does not exist any such 
a, then such an a exists for none of the m and 
enantiomorphism occurs - elements of Af+(n) send 
the group to one of the proper classes, the elements 
of the coset to the other. There are simple criteria: 
(i) enantiomorphism occurs when the affine nor- 
malizer of 03 lies completely in Af+(n), (ii) there is 
no enantiomorphism if the affine normalizer of 03 

contains at least one element of m. Af÷(n). Despite 
the simplicity of these criteria, the occurrence of 
enantiomorphism in arbitrary dimensions has not 
been completely analysed. According to those criteria, 
we have to look up whether there exists an m such 
that the group 03,,={mGm -1, mTG, P, muG(g)} 
coincides with the group 03 = {G, T6, P, UG(g)}. Then 
we have three possible kinds of enantiomorphism: 

(i) geometric enantiomorphism: if the linear nor- 
malizer of G lies completely in G + V(n), then mGm -1 
does not coincide with G for any m; 

(ii) arithmetic enantiomorphisrn: if mGm -~ = G for 
some m, but for none of them mT6 = TG; 

(iii) screw enantiomorphism: there exists rn for 
which mGm -~ = G and mTG = T6 but for some UG(g) 
the systems of nonprimitive translations uG(g) and 
muG(g) are not equivalent. 

It would be interesting to find out how enan- 
tiomorphism of reducible space groups depends on 
the enantiomorphisms of its subperiodic classes. Geo- 
metric enantiomorphism may occur only in spaces of 
even dimensions because the complete inversion 
always has the property iGi-~= G and in spaces of 
odd dimensions it belongs to the coset mG+V(n). 
This enantiomorphism is then common for all groups 
of a geometric class, including the subperiodic ones. 
We do not know any examples of arithmetic enantio- 
morphism. Geometric enantiomorphism has been 
found for the four-dimensional cases in the book 
by Brown, Billow, Neubilser, Wondratschek & 
Zassenhaus (1978); it leads to enantiomorphism of 
arithmetic classes but there is no case where arith- 
metic enantiomorphism occurs. Screw enantio- 
morphism occurs in three dimensions, where 10 of 
the 1 1 pairs are reducible. Enantiomorphism of space 
groups is, in these cases, connected with enantio- 
morphism of their rod classes. It seems that, in 
general, screw enantiomorphism of space groups 
implies screw enantiomorphism in at least one of the 
subperiodic classes with respect to any possible 
reduction but we have not proved this so far. 

3. Inverse problems in the factorization process and 
refinement of space-group classification 

Up to now we have considered situations when a 
reducible space group is known or given and we are 
looking for subperiodic classes to which it belongs 
with respect to various possible reductions. This is 
one side of the relationship between reducible space 
groups and contracted subperiodic groups. Inverse 
problems may be described as those in which we are 
concerned with the extent to which the space groups 
are determined on the grounds of various items of 
information on their subperiodic classes. 

Classification of reducible space groups into sub- 
periodic classes refines the accepted classification 
scheme into geometric and arithmetic classes with 
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which we are familiar. Actually, a finer classification 
is desirable even within the geometric class. We shall 
first see how to refine the classification of space and 
subperiodic groups of a given geometric class. 

3.1. Space groups with the same point group 

The point group G defines a geometric class. This, 
however, includes all space groups which have, as 
their point group, any of the conjugates of G in 6(n) .  
Since fixing of G means geometrically fixing the 
'orientation of the group',  we shall say that the set 
of all space groups with a given G forms an 'oriented 
geometric class'. 

As a next step we have to look for all possible 
G-invariant translation subgroups TG (we assume 
that G is crystallographic and hence we look only 
for discrete groups TG). Any pair (G, TG) then defines 
an arithmetic class; since we consider only a fixed 
group G, we shall use the term 'oriented arithmetic 
class' for space groups of the same arithmetic class 
with fixed group G. Again there is freedom in the 
choice of translation subgroups TG within the orien- 
ted arithmetic class. This is the freedom in the choice 
of lattice parameters. The set of space groups with 
the same pair (G, TG) in which not only G but also 
TG is fixed may then be called an oriented 'arithmetic 
class with fixed parameters' .  We shall use the symbol 
{G, TG} for this set of groups and reserve the 
symbol ((3, TG) for the whole arithmetic class. 

The groups within the same class {G, TG} then 
differ by systems of nonprimitive translations with 
respect to a given origin P. A certain space group 
~= {(3, TG, P, UG(g)} of the class {(3, TG} generates 
a set of groups 

qg(x) = {G, TG, P, UG(g)+~(g,'t)}, (4a) 

which differ only by a shift "r from ~. Further, ~3(a-) = 
if and only if q~(g, a-) = 0 (mod T6) for all g ~ G. Sol- 
utions of the last congruences form a translation 
group, which is common for all groups of a given 
arithmetic class {G, TG}. This group, denoted by 
TN{G, TG}, is the translation subgroup of both affine 
and Euclidean normalizers of groups of the arithmetic 
class {(3, TG}. We call it the translation normalizer of 
the group ~3 (Kopsk2~, 1990). Let us remark that the 
significance of translation normalizers escaped the 
attention of crystallographers as previously did the 
importance of normalizers at all, though they have 
been more or less explicitly used [Boyle & Lawrenson 
(1973); Giacovazzo (1974); translation subgroups of 
Cheshire groups by Hirshfeld (1968)]. They are men- 
tioned in the last edition of International Tables for 
Crystallography (Hahn, 1987) as translation sub- 
groups of Euclidean and affine normalizers and since 
the latter are known and tabulated in this edition, 
there seems to be no necessity to be concerned with 
the translation normalizers. This is, however, only an 

impression which occurs partly because both 
Euclidean and affine normalizers of groups up to 
three dimensions can be easily guessed from their 
diagrams. The translation normalizers are an impor- 
tant theoretical tool themselves (we shall see one 
example of their application below) and their calcula- 
tion would be the first natural and unavoidable step 
in the calculation of Euclidean or affine normalizers 
in general dimensions. They are also known under 
the name of weight groups (Schwarzenberger, 1980; 
Maxwell, 1975). 

Thus, it is ~ ( ' r )=  ~3 as long as -re TN{G, TG}. It is 
therefore meaningful to distinguish only the groups 
~('r) for which "r are representatives in coset resol- 
ution of V(n, R) with respect to TN{G, TG}. 

Further, we choose a certain system of nonprimitive 
translations u~)(g)  and accordingly a certain space 

( a  
group ~3 (~) = {G, TG, P, UG )(g)} as a representative in 
each set of translationally conjugate space groups. 
Then every space group of the arithmetic class 
{G, TG} with fixed orientation of G and lattice 
parameters of TG is one of the groups ~3(~)(a'). It is 
possible to choose the systems of nonprimitive trans- 
lations in such a way that they will themselves form 
a group under addition modulo T6 (we ask the reader 
to believe this statement without proof) and then we 
can introduce formal multiplication of space groups 
in the class {G, T6}: 

q3('~)(a'). ~(t3)(Ix)= ~tV)(v) (5a) 

and 

uLna(g) ~,~ <~) +UG (g)=UG (g) (mod TG) 

~'+~t = u  (mod TN{G, TG}). 

We call this law the Baer multiplication of space 
groups. 

Actually, the sets ~(~)(a') with the labels (c~) define 
so-called extension classes which correspond to the 
elements of the second cohomology group HE( G, TG} 
(Ascher & Janner, 1965, 1968/69). 

Let us finally recall that the space groups with a 
trivial (either vanishing or equal to shift function) 
system of nonprimitive translations are the so-called 
symmorphic groups of the arithmetic class (G, TG}. 
These groups correspond to the unit element of the 
group H2( G, TG). 

3.2. Contracted (and ordinary) subperiodic groups 
with a given point group 

It is intuitively clear (and we shall prove it soon) 
that every contracted subperiodic group of a given 
geometric class G appears as a factor group to some 
space groups of the same geometric class. Subperiodic 
groups also form geometric and oriented geometric, 
arithmetic and oriented arithmetic classes as well as 
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oriented arithmetic classes with fixed parameters. 
Within a given oriented geometric class, the subperi- 
odic groups differ by the G-invariant subspaces 
V~(k, R) spanned by their translation subgroups Tel.  
If the group G admits only orthogonal reductions, 
there is a finite number of possible G-invariant sub- 
spaces, otherwise there are infinitely many. The 
dimension k of Vt(k, R) together with the total 
dimension n determines the kind of subperiodic 
group (frieze, layer, rod or magnetic groups to name 
those which are already in use). The action of G on 
TG~ determines an arithmetic class; if orientation of 
G and parameters of TG~ are fixed, we again say that 
the groups with the same G, TG~ form an oriented 
arithmetic class [(3, TGI] with fixed parameters. We 
shall distinguish arithmetic classes of contracted sub- 
periodic groups by the same kinds of brackets we use 
for their Seitz symbols. Thus {G, TG} will mean an 
oriented arithmetic class with fixed parameters for 
the ordinary subperiodic groups which belong to the 
contracted class [G, TG~]. Again we may reserve the 
symbol (G, TG~) for the whole arithmetic class. 

Within the arithmetic class [G, TG~] we can use the 
same scheme as in the arithmetic class {G, Tc} of 
space groups. Hence each group ~ = [ G ,  Tc~, P~, 
UGh(g)] generates a set of translationally conjugate 
groups 

~(a ' , )  = [G, TG,,P,,UG,(g)+q~(g,'r,)] (4b) 

and the translation normalizer TN[G, TG~] deter- 
mines all vectors of V~(k, R) for which Lf(a-~)--5 °. 
We use the same kind of brackets in the symbol of a 
normalizer as in the symbols for groups and arith- 
metic classes; here the square brackets indicate that 
we consider only shifts in Vl(k, R) as it is natural for 
contracted subperiodic groups. This should be distin- 
guished from the translation normalizer TN{G, Tc~} 
which will be the normalizer of ordinary subperiodic 
groups of the arithmetic class {G, TG~} in E(n) and 
where, accordingly, all vectors of V(n, R) will be 
considered. 

Again we can choose a representative system of 
nonprimitive translations u~1~(g) and the respective 
group ~ , )  in each set of translationally conjugate 
groups of the class [G, T61], again we can choose the 
representatives in such a way that they themselves 
form a group under addition mod TG~ and again we 
can introduce Baer multiplication: 

for 

~(o')(a'l) • 5~(~')(l.tl) = ~c~')(v,) (5b) 

UG 1 ~,g)= UGl I,g) (mod TG1) 

and 

'rl+pt,  : V l  (mod TN[G, TG,]). 

The groups for which the system of nonprimitive 
translations is trivial, i.e. either vanishing or equal to 
the shift function, are again the symmorphic groups 
of the arithmetic class [G, TG1]. The same scheme 
naturally holds also for the complementary contrac- 
ted subperiodic groups, for which we introduce orien- 
ted classes ((3, TG2) with fixed parameters. 

3.3. Inverse problems connected with subperiodic 
classes 

Now we shall see to what extent various informa- 
tion on subperiodic classes determines a space group. 
There are two main situations: 

1. We assume that a certain admissible reduction 
V(n, R) = Vl(k, R)O) V2(h, R) is given. The basic 
problem is then: Given two subperiodic groups 
and ~ with translation subgroups in V~(k, R), 
V2(h, R), respectively, what space groups belong to 
their subperiodic classes with respect to this reduc- 
tion? We can extend the problem and include certain 
suitable sets of subperiodic groups instead of one 
pair (for example all the arithmetic classes). 

2. We assume that only one of the G-invariant 
subspaces is specified, say the V~ (k, R), and the basic 
problem is then the determination of space groups 
which belong to a certain subperiodic class, defined 
by the contracted group, the translation subgroup of 
which lies in V~(k, R). Again we can extend the 
problem to consider space groups corresponding to 
a wider set of subperiodic groups (here we have also 
the arithmetic class in mind). 

There are the following differences in the two prob- 
lems: In the first one both homomorphisms 0"! and 
o-2 are specified from the beginning. In the second 
there are two possibilities: The subspace V~(k, R) 
defines uniquely the G-invariant complement 
V2(h, R) and hence both homomorphisms o.~, o.2 only 
if the resulting reduction is of orthogonal class. But 
the space V~(k, R) itself already determines whether 
the reduction class is orthogonal or inclined. If it is 
orthogonal, then the complement and hence also the 
homomorphisms are already defined by V~(k, R). In 
the case of inclined reductions there remains a certain 
freedom in the choice of the G-invariant complemen- 
tary subspace and hence in the choice of homomorph- 
isms 0-~, o'2. 

There is also a second difference in the two situ- 
ations. In the first of them we assume also that both 
complementary subperiodic classes are specified. In 
the second we specify only one of the subperiodic 
classes. The choice of the complementary subspace 
in case of inclined reductions is a part of the 
specification of the complementary subperiodic 
group. In addition, we can further specify the arith- 
metic class of this group and finally the (lattice) 
parameters of this class. 
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4. Space groups on the intersection of subperiodic 
classes 

For the sake of brevity, we shall now use the words 
geometric and arithmetic class in the meaning of 
oriented geometric and of oriented arithmetic class 
with fixed parameters. Both situations described 
in the preceding subsection then boil down to the 
following: 

Given arithmetic classes [(3, To,] and (G, To2) of 
complementary contracted subperiodic groups; what 
space groups belong to corresponding subperiodic 
classes? 

First of all, the arithmetic classes [G, To~], (G, To2 ) 
determine arithmetic classes { G, To} of space groups 
which are candidates for consideration. The direct 
sum To = To,O To2 is always G invariant if the com- 
ponents are, so that we have at once the arithmetic 
class {(3, To}, which corresponds to the Z-decompos- 
able case with respect to the reduction defined by 
spaces spanned by To1, To2. As we shall see, this 
case leads to a particularly simple and powerful result. 

Further, there exist arithmetic classes { G, To} with 
G-invariant translation groups To which are sub- 
direct sums of groups TGI , To2; these are now the 
groups we have usually supplied with superscripts 0. 
We do not know any general algorithm for the con- 
struction of such groups, especially in the case of 
inclined .reduction. This belongs to one of the prob- 
lems of integral (Z) representations which are, as far 
as we know, not yet completely solved. For up to four 
dimensions we know, however, all possible solutions. 
We shall restrict our consideration of these cases to 
a proof of one theorem which might be useful. 

4.1. Z-decomposable cases: intersection theorem and 
symmorphic representatives of subperiodic classes 

In the case when arithmetic class {G, To} of reduc- 
ible space groups is Z decomposable into arithmetic 
classes [G, To,], (G, To2), we have an elegant solution 
given by the following: 

Theorem 2 (Intersection theorem): Let [(3, To,] and 
((3, To2) be arithmetic classes of contracted subperi- 
odic groups and {G, To} an arithmetic class of space 
groups, for which To is the direct sum of To,, To2. 
Then there is a one-to-one correspondence between 
space groups of the class { (3, To} and pairs of contrac- 
ted subperiodic groups of arithmetic classes [ (3, To,], 
(G, To2), given by °d <---> [o',(~d), trz(Cg)]. 

Proof: The groups To,, To2 define the G-invariant 
subspaces and hence the homomorphisms or,, o'2. 
These homomorphisms assign to each space group 
of the class {G, To} exactly a unique pair of contrac- 
ted groups of classes [(3, To,], ((3, To2) by the fac- 
torization theorem. Let us now show that the opposite 

is also true. We shall use labels a , ,  a2 for sets of 
translationally conjugate groups ~,  ~ respectively, 
indicating by labels al = 1 or a2 = 1 that either ~ or 

is symmorphic. 
If we now take a group ~(m)(,rl) of the class 

[(3, To,], then its system of nonprimitive translations 
satisfies Frobenius congruences mod To,. But To, is 
a subgroup of To and hence the same system of 
nonprimitive translations satisfies also Frobenius 
congruences mod To. There exists therefore a space 
group of the class {G, To} with the same system of 
nonprimitive translations as the group ~ , ) ( ' r , ) ;  we 
shall denote it by ~'~'")( 'rl). Analogously there exist 
space groups ~"~)( ' r2)  which correspond in the same 
way to groups ~"~)(a'2). Finally, to a pair of groups 
(~m)(,r ,) ;  ~2)( ' r2) )  we shall assign that space group 
~d~m"~9('r, +'rE), the system of nonprimitive transla- 
tions of which will be the sum of the systems of 
nonprimitive translations of the two subperiodic 
groups. Hence we get the correspondence 

~d(""~)('r, +'r2) ~ ( ~¢'~')('r,); ~¢~2)('r2)), (6) 

in which pairs of groups on the right-hand side are 
images of groups on the left-hand side by 
homomorphisms o', ,  tr2. 

The groups cg('~'")('r,+a'2) belong to subperiodic 
classes ~ ' ) ( ' r l )  and Y/*~')(-r:), the latter of which is 
symmorphic. The groups cg~l'~)('r,+'r2) belong to 
subperiodic classes ~ ' ) ( - r , ) ,  ~(~)('r2), the first of 
which is symmorphic. 

Definition 3: The groups qg('~"l)('r,+'r2) will be 
called the symmorphic groups of subperiodic class 
~(m)(-r,), the groups cg(l"~2)('rl +'r2) will be called the 
symmorphic groups of subperiodic class ~ (~2)('r2). It is, 
perhaps, also suitable to use the wording partially 
symmorphic groups. 

This terminology is justified by the fact that par- 
tially symmorphic groups have analogous properties 
to the usual symmorphic groups. There are three 
equivalent characteristics of ordinary symmorphic 
groups: (1) Their systems of nonprimitive translations 
either vanish or are equal to the shift function 
with vector in V(n, R). (2) There is a point in space 
(Wyckoff position) or rather a set of such points which 
exhibit the complete point symmetry of the space 
group. (3) The space group is a semidirect product 
(or split extension) of translation group and (by) the 
point group. 

Analogously, the (partially) symmorphic space 
group of a certain subperiodic class has the following 
properties: (1) Its partial system of nonprimitive 
translations in complementary space either vanishes 
or equals the shift function. (2) There is a hyperplane 
(sets of hyperplanes) with directions generated by the 
translation subgroup of the subperiodic class which 
exhibits the full subperiodic symmetry with respect 
to the space group; such hyperplanes can also be 
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distributed into Wyckoff sets. (3) The space group is 
a semidirect product (split extension) of partial trans- 
lation subgroup in complementary space and (by) the 
subperiodic group. 

Groups we have denoted by ~(l'~)(x~ +'rE) are sym- 
morphic groups of symmorphic subperiodic classes. 
We identify them easily as the symmorphic groups 
of the arithmetic class {G, T6}. 

The intersection theorem explains the algebraic 
origin of a fact long known to crystallographers 
(Cochran, 1952). It has been observed in connection 
with consideration of layer groups that to each layer 
group there corresponds a certain space group which 
has an identical diagram. This is now clearly seen in 
new editions of International Tables for Crystallog- 
raphy Vol. A (Hahn, 1987), where all settings of 
orthorhombic and monoclinic groups are presented. 
These space groups are just the symmorphic rep- 
resentatives of layer classes of reducible space groups. 
Analogously, we can find space groups which are 
representatives of rod classes. 

4.2. Z-reducible indecomposable cases 

The space groups defined by the intersection 
theorem do not generally exhaust all space groups 
which belong to subperiodic classes defined by groups 
of arithmetic classes [G, T°~], (G, T°2). These pairs 
of arithmetic classes couple into arithmetic classes 
{G, To} in which the group Tc is a subdirect sum of 
T°~ and T°z.  A dimension-independent analysis of 
these cases is still not quite satisfactory and it seems 
that it would be better to approach these cases in the 
language of group extensions. Two subperiodic 
groups ~<",), ~¢~-'> do not necessarily define some 
space group of the Z-reducible arithmetic class 
{G, T~} if the latter is not decomposable into arith- 
metic classes [G, T°~], (G, T°2). There may be, in 
general, no group on the intersection of such classes, 
one or several such groups, which may belong to the 
same or to different space-group types. A more 
detailed analysis is desirable, but we present one 
theorem which may be of interest. 

Theorem 3: Let ~ be a space group of an arithmetic 
class {(3, T~}, in which the group T~ is Z reducible 
(not decomposable) into the subdirect sum of transla- 
tion groups T ~ ,  T ~  of subperiodic arithmetic 
classes [G, T°~], (G, T°2) and let this group belong 
to subperiodic classes ~7~,~, ~(~2). Then all space 
groups qg(p.~), where p.~ runs over the representatives 
in coset resolution of the direct sum of translation 
normalizers TN[ G, T°~I]~ Tu( G, T°2) with respect 
to the translation normalizer Tu{G, T~}, are distinct 
and belong to the same subperiodic classes. 

Proof: It is a direct consequence of the factorization 
theorem that from ~('~,) = cr~(~c~l), ~<~-') = cr2(~3 <'~1) 
follows crl(qgc")(a')) = ~c~,~('rl) , 0"2(~=)(,r)) = 

~('~)('r2), where ' r= ' r l+~'2,  "t,~VI(k,R), ~2~ 
V2(h,R). Further, ~3(~-)=q3 if and only if x 
)'N{G, To}. On the other hand, ~{",)('r~)= ~(",) if 
and only if-r~ ~ TN[G, T°~] and ~("2)(x2)= ~('~2) if 
and only if a'2~ TN(G, o TG2). It is easy to show that 
the direct sum TN[G, T°c~]OTN(G, T°2) always 
contains TN{G, To}. Let p., be the representatives in 
corresponding coset resolution. Then the groups 
~3c~)(p.;) are distinct space groups while Lft~,)(p.~)= 
Lec~, ), ~ ) ( p . , )  = ~1~2). 

Discussion 

Factorization of reducible space groups by their par- 
tial normal translation subgroups and the inverse 
construction of reducible space groups as extensions 
of these partial translation subgroups by correspond- 
ing subperiodic groups appear to be very important 
and useful procedures. If we may permit ourselves 
to put the cart before the horse for a while, then we 
can suggest the following ramifications of the theory: 

1. We have a new tool for construction of higher- 
dimensional space groups from lower-dimensional 
ones. As we have already said in the first part of the 
paper, reducible space groups can be expressed as 
subdirect or multiple subdirect products of lower- 
dimensional space groups (Kopsk~,, 1988a). Another 
way, connected with this, is to construct higher- 
dimensional space groups via subperiodic ones. The 
latter can be constructed from lower-dimensional 
space groups and can then be used themselves for 
construction of higher-dimensional ones. 

2. Reducible space groups are useful in the prac- 
tical solution of a problem for which we suggest the 
name 'scanning" of subperiodic symmetries. This can 
be formulated as follows: Given a space group ~3 
and an orientation V~(k, R) of a set of hyperplanes 
(P+ ' r2 ;  Vl(k, R)), find the subperiodic groups con- 
taining those elements of ~3 which leave the hyper- 
planes invariant. The practically important case is the 
scanning of layer and rod groups. Layer symmetries 
in crystals, associated with certain directions of 
planes, are of use in the theory of domain walls and 
twin boundaries or even of plane defects; i.e. generally 
in problems of bicrystallography. Analogously, rod 
groups are useful in consideration of linear defects. 
Classification of layer and rod symmetries at certain 
locations of planes and lines can be performed in a 
way analogous to the classification of Wyckoff posi- 
tions for site-point symmetries (Janovec, Kopsk~, & 
Litvin, 1988). Reducible space groups play an inter- 
mediate role in such a determination as the so-called 
'scanning groups'. 

3. The fact that subperiodic groups are factor 
groups of space groups can be used in representation 
theory. For example, the ordinary three-dimensional 
space groups, with the exception of cubic ones, have 
layer and rod groups as factor groups. In accordance 
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with this, each representation of a rod and/or  of a 
layer group engenders a certain representation of all 
those space groups which belong to corresponding 
layer and rod classes. This is a suitable regularity for 
systemization of representations (Kopsk2~, 1988b). 
Accordingly, there also exists isomorphism of lattices 
of subgroups of subperiodic groups and of sublattices 
of 'partially equitranslational' subgroups in the lat- 
tices of subgroups of corresponding space groups 
(Kopsk2~, 1987). This relationship is quite analogous 
to that between the lattices of subgroups of point 
groups and lattices of equitranslational subgroups of 
space groups as given by Ascher (1968). 

Reducibility can also be introduced for the subperi- 
odic groups themselves; this can be done for ordinary 
as well as for contracted subperiodic groups (Litvin 
& Kopsk2~, 1987). As we can see, there are many 
viewpoints which have to be considered in connection 
with the extension of the reducibility concept to the 
Euclidean motion groups. Points 2 and 3 show the 
usefulness of the concept of reducibility and of the 
classification of space groups into subperiodic classes 
even on the level of groups up to three dimensions. 
Such a classification has been performed and will 
soon be published. 
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Abstract  

Two-beam and symmetric three- and four-beam graz- 
ing-incidence X-ray diffraction (GIXD) by crystals 
without absorption are studied based on the dynami- 
cal theory of X-ray diffraction. For two-beam cases, 
a new geometrical scheme is given to reveal graphi- 
cally the excitation of the dispersion surface. For 
symmetric three- and four-beam cases, the 
expressions for specularly reflected and forward 
diffracted intensities are derived analytically. Results 
from the numerical calculations for the diffracted 
intensities, the penetration depths, the coordinates of 
the dispersion surface and the mode excitations are 
also presented for two-, three- and four-beam GIXD. 

I. Introduction 

Grazing incidence of X-ray scattering (GIXS), sug- 
gested by Marra, Eisenberger & Cho (1979), has been 

0108-7673/89/120823-11503.00 

used as an experimental technique for probing the 
structures of crystal surfaces and overlayer interfaces. 
Its applications have recently been reviewed in an 
article by Fuoss, Liang & Eisenberger (1989). 
Theoretically, Vineyard (1982) described GIXS with 
a distorted-wave approximation in the kinematical 
theory of X-ray diffraction. In terms of the ordinary 
dynamical theory of Ewald (1917) and Laue (1931), 
Afanas'ev & Melkonyan (1983) worked out a formu- 
lation for the dynamical diffraction of X-rays under 
specular reflection conditions (GIXD - grazing- 
incidence X-ray diffraction) and Aleksandrov, 
Afanas'ev & Stepanov (1984) extended this formalism 
to include the diffraction geometry of thin surface 
layers. Subsequently, the properties of wavefields 
constructed during specularly diffracted reflections 
have been discussed in more detail by Cowan (1985) 
and Sakata & Hashizume (1987). Meanwhile, a 
geometrical interpretation of GIXS based on a three- 

O 1989 International Union of Crystallography 


